Adaptive Optimal Dynamic Control for Nonholonomic Systems
نویسندگان
چکیده
In this paper two different control methods are combined for controlling a typical nonholonomic device (a bicycle) the dynamic model and parameters of which are only approximately known. Most of such devices suffer from the problem that the time-derivatives of the coordinates of their location and orientation cannot independently be set so an arbitrarily prescribed trajectory cannot precisely be traced by them. For tackling this difficulty Optimal Control is proposed that can find acceptable compromise between the tracking error of the various coordinates. Further problem is that the solution proposed by the optimal controller cannot exactly be implemented in the lack of precise information on the dynamic model of the system. Based on the decoupled nature of the dynamic model of the longitudinal and lateral behavior of the engine special fixed point transformations are proposed to achieve adaptive tracking. These transformations were formerly successfully applied for the control of holonomic systems. It is the first time that the combined method is checked for various trajectories and dynamic model errors via simulation. It yielded promising results.
منابع مشابه
Approximation Based Adaptive Tracking Control of uncertain nonholonomic mechanical Systems
In this paper, the trajectory tracking control problem of uncertain nonholonomic mechanical systems is investigated. By separately considering kinematic and dynamic models of a nonholonomic mechanical system, a new adaptive tracking control is proposed based on neural network approximation. The proposed design consists of two steps. First, the nonholonomic kinematic subsystem is transformed int...
متن کاملFriction Compensation for Dynamic and Static Models Using Nonlinear Adaptive Optimal Technique
Friction is a nonlinear phenomenon which has destructive effects on performance of control systems. To obviate these effects, friction compensation is an effectual solution. In this paper, an adaptive technique is proposed in order to eliminate limit cycles as one of the undesired behaviors due to presence of friction in control systems which happen frequently. The proposed approach works for n...
متن کاملTrajectory Tracking Control of Nonholonomic Mechanical Systems in Presence of Model Uncertainties
This paper presents a robust adaptive feedback linearizing control law to solve the integrated kinematic and dynamic trajectory tracking problem of nonholonomic mechanical systems in presence of parametric and nonparametric uncertainties. An adaptive nonlinear control law is proposed based on input-output feedback linearization technique to get asymptotically exact cancellation of the parametri...
متن کاملAdaptive Robust Control of Nonholonomic Wheeled Mobile Robots
This paper develops methodologies for an adaptive robust path tracking control of a nonholonomic Wheeled Mobile Robot (WMR) with nonlinear driving characteristics and unknown dynamic parameters. To solve the problem of position/orientation tracking control of WMR, a novel robust kinematics control law is developed to steer the vehicle to asymptotically follow the desired trajectories. To compen...
متن کاملControl of nonholonomic systems via dynamic compensation
The problem of controlling nonholonomic systems via dynamic state feedback and its structural aspects are analyzed. Advantages and drawbacks with respect to the use of static state feedback laws are discussed. In particular, nonholonomic constraints are shown to yield possible singularities in the dynamic extension process. Nevertheless, these singularities can be avoided by the proper design o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computing and Informatics
دوره 28 شماره
صفحات -
تاریخ انتشار 2009